博客
关于我
windows10安装tensorflow2.0配置
阅读量:357 次
发布时间:2019-03-04

本文共 747 字,大约阅读时间需要 2 分钟。

查看本机的CUDA驱动适配版本

桌面右键打开英伟达控制面板,点击帮助->系统信息->组件。在系统信息中可以看到CUDA的当前版本。

TensorFlow各个版本与CUDA版本的对应关系

根据参考,我的电脑安装的是TensorFlow GPU 2.0.0版本,CUDA 10.0版本,cudnn 7.4版本。

安装CUDA

下载地址:(国内访问可能较慢,建议使用镜像或其他工具)

解压路径与安装路径不同,建议选择不同的目录进行解压。安装完成后不要立即删除解压文件,以备后续检查。

安装完成后,确认CUDA工具和驱动已正确安装,路径通常位于C:\Program Files\NVIDIA GPU Computing Toolkit\

安装cuDNN

下载地址:

注册英伟达账号(建议使用163邮箱,避免验证延迟),下载对应版本的cuDNN安装包。

解压后将cuDNN文件夹复制到CUDA安装目录下(如C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\),确保路径正确。

添加环境变量

在系统环境变量中添加CUDA工具路径和cuDNN路径,确保Python环境能找到CUDA和cuDNN库文件。

完成后,打开终端输入“nvcc -V”确认CUDA版本是否正确显示。

安装TensorFlow

自行安装Anaconda环境:

创建虚拟环境:conda create -n tf-gpu python=3.6

激活环境:source tf-gpu

安装TensorFlow GPU包:pip install --upgrade tensorflow-gpu==2.0.0

进入Python环境,验证TensorFlow版本和GPU是否可用。

转载地址:http://wygq.baihongyu.com/

你可能感兴趣的文章
nodejs学习笔记一——nodejs安装
查看>>
vue3+Element-plus icon图标无法显示的问题(已解决)
查看>>
NodeJS实现跨域的方法( 4种 )
查看>>
nodejs封装http请求
查看>>
nodejs常用组件
查看>>
nodejs开发公众号报错 40164,白名单配置找不到,竟然是这个原因
查看>>
Nodejs异步回调的处理方法总结
查看>>
NodeJS报错 Fatal error: ENOSPC: System limit for number of file watchers reached, watch ‘...path...‘
查看>>
nodejs支持ssi实现include shtml页面
查看>>
Nodejs教程09:实现一个带接口请求的简单服务器
查看>>
nodejs服务端实现post请求
查看>>
nodejs框架,原理,组件,核心,跟npm和vue的关系
查看>>
Nodejs概览: 思维导图、核心技术、应用场景
查看>>
nodejs模块——fs模块
查看>>
Nodejs模块、自定义模块、CommonJs的概念和使用
查看>>
nodejs生成多层目录和生成文件的通用方法
查看>>
nodejs端口被占用原因及解决方案
查看>>
Nodejs简介以及Windows上安装Nodejs
查看>>
nodejs系列之express
查看>>
nodejs系列之Koa2
查看>>